If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+34y-1=0
a = 5; b = 34; c = -1;
Δ = b2-4ac
Δ = 342-4·5·(-1)
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-14\sqrt{6}}{2*5}=\frac{-34-14\sqrt{6}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+14\sqrt{6}}{2*5}=\frac{-34+14\sqrt{6}}{10} $
| (6x-2)+(10x-58)=180 | | 0=-16t^2+80t+80 | | .50(b+14)=b+14 | | (9/12)+(t/12)=-3 | | (2m-1)=3 | | (z/7)+(5/7)=-3 | | 7/6p+p=234 | | -6.85+m4=-11 | | 3x+5(x–3)=15 | | (k/4)-(3/4)=10 | | 32=3(v+6)+4v | | 3.2x+2,6=-23 | | 10/2x+4=4/`x+5 | | -32=8(y-1) | | 8x-1=-33 | | 8x-1=33 | | 5(u-2)-7u=-28 | | 6x+4=-11+x | | 27=-1/5q^2+38 | | (x-1)(x+4)=5+3 | | 27=—1/5q^2+38 | | 5(u-2)-7u=28 | | 2x+10=1x+5 | | 3n^2+6n+1=0 | | 8−2x/5=−6 | | 6(w+6)-4w=18 | | 74=-7(x-4+11 | | 17x+4=72 | | ³√4x=12 | | 5-(8x+5)=2-x | | /7x-9=3x+3 | | 12x+7=10x+16 |